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Abstract 

We present a method for visualizing unsteady flow by displaying its vortices. The vortices are 
identified by using a vorticity-predictor pressure-corrector scheme that follows vortex cores. The 

cross-sections of a vortex at each point along the core can be represented by a Fourier series. A 
vortex can be faithfully reconstructed from the series as a simple quadrilateral mesh, or its recon- 
struction can be enhanced to indicate helical motion. The mesh can reduce the representation of 

the flow features by a factor of one thousand or more compared with the volumetric dataset. With 
this amount of reduction it is possible to implement an interactive system on a graphics worksta- 
tion to permit a viewer to examine, in three dimensions, the evolution of the vortical structures in a 

complex, unsteady flow. Accesion For 
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1   Introduction 
In order to study the complex behavior of an unsteady (i.e., time-varying) fluid flow, one 

might imagine being immersed within the flow but not disturbing it. One could then roam 

about the flow field, free to observe its development or to measure quantities of interest. This 

scenario is impossible in real life, of course. The physical presence of a human observer 

would change the very flow under inspection. However, a direct numerical simulation (DNS) 

of the flow produces all the relevant flow quantities that an appropriate visualization system 

would need in order to let a viewer navigate through the flow. In order to develop such an 

interactive system, one must (1) locate the salient structures within the three-dimensional flow 

data, (2) represent the structures geometrically, and (3) display them to the viewer, preferably 

at interactive frame rates of 20 updates per second or more. 

What, exactly, are the important structures within an unsteady flow? Vortices are typically 

considered the most important structures in flow fields. Consider the effects of vortices over a 

range of spatial scales: large-scale vortices are responsible for hurricanes and tornadoes; 

medium-scale vortices affect the handling characteristics of an airplane; small-scale vortices 

are the fundamental building blocks of the structure of turbulent flow. Vortices control the 

dynamics of the flow in the sense that if they are removed the flow becomes quiescent. As an 

example, hairpin vortices are considered to be "a major sustaining flow structure involved in 

the perpetuation of turbulent boundary layers" [1]. Leonard [2] emphasizes that 

...it is mathematically correct and often very convenient to consider in viscid fluid 

dynamics in terms of parcels of vorticity which induce motion on each other as an 

alternative to pressure-velocity considerations. 

One would like, therefore, to visualize a flow by locating and displaying its vortices. This 

paper describes how a predictor-corrector technique can locate vortex structures in three- 

dimensional flow data [3] with enough data-reduction to store and animate them on a worksta- 

tion. 

The predictor-corrector technique is effective at locating vortices even in turbulent flow 

data. Simulating an unsteady flow may require hundreds or even thousands of time steps, each 

containing many megabytes of data. The vortices themselves may occupy significant subvol- 

umes of the original volumetric data. A typical scientific workstation does not have adequate 

memory to store more than a few frames of the original data; data reduction is absolutely 



essential for the interactive display of time-varying vortices. The predictor-corrector scheme 

provides a terse, one-dimensional representation of vortex tubes, which offers significant 

reduction of the flow data. This benefit suggests the design of an interactive visualization sys- 

tem that can re-play the development of a computed flow while allowing a viewer to explore 

the vortex shapes with a graphics workstation. 

The paper is organized as follows. Section 2 presents a survey of other techniques that 

attempt to identify vortices. Section 3 presents our predictor-corrector scheme and discusses 

some of the programming considerations that are necessary to make the scheme efficient. Sec- 

tion 4 describes how we calculate the cross-sections of the vortex tube and how we represent 

them in a compressed fashion using Fourier analysis. In section 5 we show how the vortex 

skeletons, together with an efficient representation of the cross-sections, offer substantial data- 

reduction in representing features of a flow. We describe the process of reconstructing the vor- 

tex tubes from the compressed format and report on the successful development of an interac- 

tive graphical system based on these techniques. 

2   Survey of Identification Schemes 

The term "vortex" connotes a similar concept in the minds of most fluid dynamicists: a helical 

pattern of flow in a localized region. There are mathematical definitions for "vorticity" and 

"helicity," but vortical flow is not completely characterized by them. For example, a shear 

flow exhibits vorticity at every point even though there is no vortical motion. A precise defini- 

tion for a vortex is difficult to obtain — a fact supported by the variety of efforts outlined 

below. 

2.1  Ideal Definition 

It is surprisingly difficult to establish a definition of a vortex that is robust enough to locate all 

the coherent structures that a flow physicist would consider to be vortices. Robinson [4] sug- 

gests the following working definition for a vortex. 

A vortex exists when instantaneous streamlines mapped onto a plane normal to the 
vortex core exhibit a roughly circular or spiral pattern, when viewed from a reference 
frame moving with the center of the vortex core. 

Robinson [5] and Robinson, Kline, and Spalart [6] use the above definition to confirm that 

a particular structure is, in fact, a vortex. Unfortunately, this definition requires a knowledge 



of the vortex core before one can determine whether something is a vortex. The definition, 

therefore, does not lend itself to a convenient algorithm for detecting vortices. 

2.2 Isovalue of a Scalar Field 

Is there a scalar value that can be easily derived from flow quantities such that a single isov- 

alue yields surfaces surrounding the vortical structures? One might imagine a scalar field that 

attains a non-negative value in the interior of the vortices but attains negative values elsewhere. The 

zero-valued isosurfaces would define the boundaries of the vortices. Several attempts have been made 

to locate vortices as isosurfaces of scalar quantities. 

Low Pressure 

Robinson and his colleagues find that elongated low-pressure regions in incompressible turbu- 

lent flows almost always indicate vortex cores. Isosurfaces of low pressure are usually effec- 

tive at capturing the shape of an individual vortex (fig. la), especially if the flow field contains 

no solid bodies. Pressure surfaces become indistinct where vortices merge, however, and a 

high-quality image can easily require thousands of triangles to create the surface. The need to 

compress the representation becomes acute when visualizing time-varying data. 

Eigenvalues of the Velocity Gradient 

Chong, Perry, and Cantwell [7] define a vortex core as a region where the velocity-gradient 

tensor has complex eigenvalues. In such a region, the rotation tensor dominates over the rate- 

of-strain tensor. Soria and Cantwell [8] use this approach to study vortical structures in free- 

shear flows. At points of large vorticity, the eigenvalues of the velocity-gradient matrix are 

determined: a complex eigenvalue suggests the presence of a vortex. This method correctly 

identifies the large vortical structures in the flow. However, the method also captures many 

smaller structures without providing a way to link the smaller vortical volumes with the larger 

coherent vortices of which they might be a part (fig. lb). 

2.3 Geometry of the Vortex Core 

Instead of defining the bounding surface of a vortex, some researchers have sought ways to 

locate the one-dimensional core through the vortex center. Various schemes for determining 

the geometry of a vortex core are described below. 

Vorticity Lines 

Vorticity is a vector quantity proportional to the angular velocity of a fluid particle. It is 

defined as 

co = Vxu 



where u is the velocity at a given point. Vorticity lines are integral curves of vorticity. 

Moin and Kim [9] [10] use vorticity lines to visualize vortical structures in turbulent channel 

flow. The resulting curves are extremely sensitive to the choice of initial location x0 for the 

integration. As Moin and Kim point out [9], 

If we choose x0 arbitrarily, the resulting vortex line is likely to wander over the whole 

flow field like a badly tangled fishing line, and it would be very difficult to identify the 

organized structures (if any) through which the line may have passed. 

Fig. 6 illustrates the potential for vortex lines to create a tangle [10]. To avoid such a confus- 

ing jumble, they carefully select the initial points. However, Robinson [5] shows that even 

experienced researchers can be surprisingly misled by ordinary vorticity lines. The problem 

with vorticity lines in a shear flow is not just that numerical techniques of integration propagate error. 

Even an errorless analytic integration fails to follow a vortex core that is not aligned in the direction of 

mean shear. Jiminez points out that a vortex tube "does not have vorticity perfectly aligned 

along its axis [core], nor does a given vortex line necessarily remain within it over its entire 

length" [11]. In order for an integral curve through a vector field to coincide with the core, the vector 

field must be aligned with the core. 

Vorticity and Enstrophy 

Jiminez et al. propose a scheme for tracing vortex cores that shares the spirit of our technique 

[11]. They consider points of maximum enstrophy (squared magnitude of vorticity) to lie 

along vortex cores. Given such a point, they integrate along the core using a two-step process. 

The first step is to follow the vorticity to the next grid plane. Then, within that plane, they 

inspect the nearest four grid points and select the one with the largest enstrophy. The method 

marches from grid point to grid point within the volume. They applied the technique to locate 

vortices within isotropic turbulence. Near the wall of a shear flow, there is a large magnitude 

of vorticity even when no vortices are present. Thus the technique is not well-suited to the 

task of identifying vortices in a shear flow. Instead of consulting the enstrophy, our technique 

uses pressure gradients for the corrector phase. In addition, we use higher-order interpolation 

in order to resolve the vortex core between grid points. 

Curvature and Helicity 

Yates and Chapman [12] carefully explore two definitions of vortex cores. Unfortunately, the 

analyses and conclusions for both definitions are appropriate only for steady flows. By one 

definition, the vortex core is the line defined by the local maxima of normalized helicity (the 

dot product of the normalized velocity and vorticity). Fig. lc shows an isosurf ace of constant 

helicity. Notice that the surface fails to capture the "head" on the upper-right side of the hair- 
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Figure 1. 
Different schemes used to identify a vortex. 
Each image visualizes the flow at the same time 
step. From top: (a) isosurface of constant 
pressure; (b) isosurfaces of complex-valued 
eigenvalues of the velocity-gradient matrix; (c) 
isosurface of constant helicity (dark line 
indicates missing vortex head; (d) isosurfaces of 
constant vorticity; (e) our predictor-corrector 
technique with Fourier cross-sections. 

pin vortex. This shows that the local maxima fail to follow the core. In the other definition, a 

vortex core is an integral curve that has minimum curvature. If there is a critical point on a 

vortex core, then that point must be a spiral-saddle. The eigenvector belonging to the only real 

eigenvalue of the spiral-saddle corresponds, locally, to an integral curve entering or leaving 

the critical point. By integrating this curve, the entire vortex core may be visualized [13]. For 

our particular flow data, however, we find that these curves (as calculated by FAST, the Flow Analysis 

Software Toolkit [14]) can miss the vortex completely. It may be that the critical points are not suffi- 

ciently resolved in the flow data for this technique to capture the cores; in that case the amount of data 

must be more finely sampled in order to locate vortex cores with this technique, at the expense of 



increasing the data storage and slowing the numerical simulation. Since the technique is derived for 

steady flows, it may be that even with finer sampling the cores would not be detected. 

User-guided Search 

Bernard, Thomas, and Handler [15] use a semi-automated procedure to identify quasi-stream- 

wise vortices. Their method finds local centers of rotation in user-specified regions in planes 

perpendicular to the streamwise direction of a turbulent channel flow. Experienced users can 

correctly find the critical vortices responsible for the maintenance of the Reynolds stress. 

Their method captures the vortices that are aligned with the streamwise direction, but in free- 

shear layers and transitional boundary layers, the significant spanwise vortices go undetected. 

Because it depends heavily on user intervention, the process is tedious and is dependent upon 

the individual skill of the user. 

2.4  Vortex Shape Detection 

Vortices exhibit the characteristic shape of elongates tubes. Below we describe two identifica- 

tion schemes that exploit this shape-knowledge to locate vortices. 

Cylinder With Maximum Vorticity 

Villasenor and Vincent [16] present an algorithm for locating elongated vortices in three- 

dimensional time-dependent flow fields. They start from a seed point and compute the average 

length of all vorticity vectors contained in a small-radius cylinder. They repeat this step for a 

large number of cylinders that emanate from the seed point. The cylinder with the maximum 

average becomes a segment of the vortex tube. They use only the magnitudes (not the direc- 

tions) of vorticity; as a consequence the algorithm can inadvertently capture structures that are 

not vortices. 

Vorticity and Vortex Stretching 

Zabusky et al. [17] use vorticity Icol and vortex stretching loo • Vul /Icol in an effort to under- 

stand the dynamics of a vortex reconnection process. They fit ellipsoids to the regions of high 

vorticity. Vector field lines of vorticity and of vortex stretching emanate from the ellipsoids. In 

flows with solid boundaries or a mean straining field, the regions with large vorticity magni- 

tudes do not necessarily correspond to vortices (fig. Id); hence, the ellipsoids do not always 

provide useful information. 

2.4   Summary of Survey 

Some of the above techniques share a simple property: they aim to capture vortices by consulting a 

scalar field derived from certain flow quantities. Without having a canonical scalar definition of a vor- 

tex, one should only treat these techniques as heuristics. The experienced flow physicist is apt to iden- 



tify vortices in a flow field based on his own knowledge of the flow characteristics, even if this 

judgment is at odds with one of the above definitions. 

Notice that the pressure surface in fig. la is smoother than the isosurfaces in figs, lb and Id. The 

latter surfaces are based on derivatives of local flow quantities and are therefore subject to numerical 

error due to differentiation. In contrast, pressure is obtained by integration which filters out noise. It 

may be difficult, in general, to develop a robust technique for locating vortices if one appeals to quan- 

tities derived through repeated differentiation. 

The isosurfaces that define the boundaries of the vortices are unstructured sets of polygons. If one 

wishes to archive the vortex geometry over the course of hundreds or thousands of time steps, the iso- 

surfaces can require large quantities (hundreds of gigabytes) of storage. While techniques exist for 

decimating isosurfaces, such decimation is not a trivial task. By contrast, the vortex cores can be repre- 

sented economically by one-dimensional curves or polylines. For vortices in the shape of elongated 

tubes, skeleton curves together with a radius function provide a natural and efficient representation. 

The methods in the survey all experience success in finding vortices under certain flow con- 

ditions. But all of them have problems capturing vortices in unsteady shear flow and/or repre- 

senting them in the most economical way. We were led, therefore, to develop another 

technique which could tolerate the complexity of a transitional flow (from laminar to turbu- 

lent) and would offer substantial data reduction. For comparison, fig. le shows the results of 

applying our predictor-corrector method with Fourier cross-sections. 

3   The Predictor-corrector Method 

We now present the heart of our vortex identification scheme: the velocity-predictor, pressure-correc- 

tor method. The method was designed to capture elongated vortices (shaped like spaghetti) 

rather than broad vortex sheets (shaped like lasagna). The method, like the techniques in the sur- 

vey, relies on heuristics: if a point is in a vortex, then the point is expected to possess certain proper- 

ties. Possessing those properties does not guarantee that a point is in a vortex, however. The method is 

designed to locate the core of the vortex, rather than the surface bounding the entire vortex. The 

method uses vector quantities for both the predictor and the corrector steps and uses scalar values as 

thresholds. 

The predictor-corrector method produces an ordered set of points (the skeleton) that 

approximates a vortex core. Associated with each point are quantities that describe the local 

characteristics of the vortex. These quantities may include the vorticity, the pressure, the 

shape of the cross-section, or other quantities of interest. The method produces lines that are 



similar to vorticity lines, but with an important difference. Whereas vorticity is a mathemati- 

cal function of the instantaneous velocity field, a vortex is a physical structure with coherence 

over a region of space. In contrast to vorticity lines, which may wander away from the vortex 

cores, our method is self-correcting: line trajectories that diverge from the vortex core recon- 

verge to the center. 

In this section we discuss the procedure used to find an initial seed point on the vortex 

skeleton. We then explain the predictor-corrector method used for growing the vortex skeleton 

from the seed point. Finally, we address how to terminate the vortex skeleton. 

3.1  Finding a Seed Point 

Vorticity lines begin and end only at domain boundaries, but actual vortices have no such 

restriction. Therefore we must examine the entire flow volume in order to find seed points 

from which to grow the vortex skeletons. We consider low pressure and a large magnitude of 

vorticity to indicate that a vortex is present. Low pressure in a vortex core provides a pressure 

gradient that offsets the centripetal acceleration of a particle rotating about the core. Large 

vorticity indicates that such rotation is probably present. These are heuristic arguments: vortical 

motion is presumed to be sustained by pressure gradients and to be indicated by vorticity. It is certainly 

possible to have low pressure (downstream of an obstacle, for example) or large vorticity (in a shear 

flow, for example) without a vortex present. Even so, the combination of the two is a powerful indica- 

tor of a vortex. 

In our implementation, the flow field (a three-dimensional rectilinear grid) is scanned 

along planes perpendicular to the streamwise direction. The scanning direction affects the 

order in which vortices are located, but not the overall features of the vortices. In each plane, 

the values of the pressure and the vorticity magnitude are checked against threshold values of 

these two quantities. A seed point is a grid point that satisfies the two threshold values. Since 

new vortex tubes can emerge at any time, we re-scan the 3D grid anew to locate seed points at 

each time step. In a more steady flow, one could advect seed points from one time step as ini- 

tial guesses at the next time step. Threshold values can be chosen a priori, or they can be a 

predetermined fraction of the extrema. The thresholds of pressure and vorticity-magnitude can be 

fairly strict. It is not necessary to include every point of the vortex core in the set of candidate seeds; it 

suffices to capture a single one. Even so, if the threshold of pressure is too low some structures 

will be missed entirely. We selected thresholds of pressure and vorticity that capture the essen- 

tial structures in the flow field. 



Compute the vorticity at a      Step in the vorticity direction 
point on the vortex core. to predict the next point. 

Compute the vorticity at 
the predicted point. 

Correct to the pressure min 
in the perpendicular plane. 

Figure 2. 
Four steps of the predictor-corrector 
algorithm. 

We next refine the position of the seed point so that it is not constrained to he on the grid. 

The seed point moves in the plane perpendicular to the vorticity vector until it reaches the 

location of the local pressure minimum. From this seed point we develop the vortex skeleton 

in two parts, forward and backward, to reach the endpoints of the vortex tube. 

3.2  Growing the Skeleton 

The predictor-corrector algorithm is illustrated in the schematic diagrams of fig. 2. The details 

for continuing the calculation from one point to the next are indicated by the captions. Steps 

1-2 represent the predictor stage of the algorithm. The corrector stage is summarized by steps 

3-4. 

Once a seed point has been selected, the skeleton of the vortex core can be grown from the seed. 

The next position of the vortex skeleton is predicted by integrating along the vorticity vector (fig. 2, 

top) which is equivalent to Euler integration of a vorticity line. The predicted point typically misses the 

vortex core. 

Next we invoke the heuristic that centripetal acceleration within a vortex is supported by low pres- 

sure at the core. In a plane perpendicular to the core, the pressure minimum is expected to coincide 

with the point where the core pierces the plane. The predicted point must be corrected to the pressure 

minimum in the plane that (1) is perpendicular to the core and (2) contains the predicted point. The 

location of the nearest core point is the unknown quantity, so condition (1) can only be satisfied 

approximately. We approximate the desired plane by choosing the plane perpendicular to the vorticity 

vector (fig. 2, bottom). 



Figure 3. 
Vorticity line (light) compared to 
predictor-corrector line (dark). Note 
that the vorticity line exits from the 
vortex tube while the predictor- 
corrector skeleton line follows the 
core. 

Individually, integral curves of vorticity or of the pressure gradient are each unreliable at 

capturing vortex cores. Section 2.2 points out the problems with vorticity lines. The pressure 

gradient does not follow the core either; moreover, a vortex may have several distinct pressure 

minima in its interior, which would require piecewise integration of the gradient in order to 

connect the components of the core. Remarkably, the combination of the vorticity and the 

pressure gradient provides a robust method of following the vortex core. The continuous mod- 

ification of the skeleton point lessens the sensitivity to both the initial conditions and the inte- 

gration details. 

The effectiveness of the predictor-corrector scheme is illustrated in fig. 3, in which data 

from the direct numerical simulations of Singer and Joslin [18] are analyzed. The transparent 

vortex tube (a portion of a hairpin vortex) is constructed with data from the full predictor-cor- 

rector method. Its core is indicated by the darker skeleton. The lighter skeleton follows the 

uncorrected integral curve of the vorticity. It is obtained by disabling the corrector phase of 

the scheme. The vorticity line deviates from the core, exits the vortex tube entirely, and wan- 

ders within the flow field. By appealing to Robinson's ideal definition of a vortex we are able 

to confirm that the predictor-corrector skeleton is the one that follows the core. The velocity 

fields around the skeleton are consistent with nearly-circular streamlines in Robinson's char- 

acterization; those around the vorticity fine are eventually not. 

3.3  Terminating the Vortex Skeleton 

Vorticity lines extend until they intersect a domain boundary, but real vortices typically begin 

and end inside the domain. Therefore, the algorithm must always be prepared to terminate a 

given vortex skeleton. A simple condition for termination occurs when the vortex cross-sec- 

10 



Figure 4. 
Vortex skeleton at time 194.4 located by the predictor- 
corrector method. Note the spiral in the center. 

Figure 5. 
Vorticity lines in a shear layer near a wall. Note the 
spiral near the top. From Jiminez and Moin, JFM v. 
225, p. 235. © Cambridge University Press 1991. 
Reprinted with the permission of Cambridge 
University Press. 

Figure 6. 
Tangle of vorticity lines in a turbulent flow. Note the 
spiral near the bottom. From Kim and Moin, JFM v. 
162, p. 343. © Cambridge University Press 1986. 
Reprinted with the permission of Cambridge 
University Press. 

tion (discussed in section 4) has zero area. As fig. 3 shows, the reconstructed vortex tubes 

taper down to their endpoints, where the cross-section vanishes. The predictor-corrector method 

is not guaranteed to terminate. On rare occasions the skeleton can enter a nearly-circular loop (fig. 4). 

We have observed this undesirable phenomenon in a small fraction of the skeletons. The spirals seem 

to occur in the vicinity of vortex junctures, but we have no reason to believe that the vortex core truly 

enters a closed loop. There are examples of this phenomenon in other works, although those examples 

do not receive any particular discussion. Figs. 5 and 6 show similar situations in other simulated flows 

[19] [10] where a vorticity line enters a tight spiral. In order to guarantee termination, we exploit our 

knowledge of the spatial extent of the 3D computational domain and limit the total arclength along a 

skeleton to be about twice the longest grid dimension. By guaranteeing termination in this way, we 

find that an average time step requires about 1400 Cray-seconds in calculating the 3D numer- 

ical simulation of the flow and about 20 Cray-seconds in identifying the vortex cores and cal- 

culating their cross-sections. 

ll 



3.4  Filaments That Connect Vortex Tubes 

Sometimes it is useful to continue the skeleton beyond the end of the vortex tube. For 

instance, if a low-intensity region exists between high-intensity regions of the same vortex, 

then the low-intensity region might not satisfy the criteria for a finite cross section. One would 

like to see the connective filament between two strong vortices even if the connection does not 

satisfy the requirements for a non-zero cross-section. The criteria for determining the cross- 

section can be made more generous in order to capture the connection, but this strategy does 

not solve the problem: in addition to capturing the weak connective vortex, we will also cap- 

ture unwanted low-intensity structures that may themselves possess regions that are weaker 

still. Our resolution of this problem exploits the asymmetric nature of the predictor-correction 

method. 

Because the predictor-corrector method follows the core of a vortex regardless of the cri- 

teria used to define the vortex cross section, the vortex skeleton can be extended even when 

the cross-sectional area of the vortex is equal to zero. The vortex of interest may either re- 

intensify or dissipate; if the vortex re-intensifies then the continuation of the skeleton line will 

provide a link between the two more-intense regions of the vortex. This link can be visualized 

as a thread that connects the two disjoint regions. On the other hand, if the vortex dissipates, 

the continuation of the skeleton fine will wander through the flow field and eventually either 

intercept a domain boundary or enter a new vortex. If a domain boundary is reached, then the 

segments of the skeleton that lie outside the last-found vortex (having non-zero cross-section) 

are discarded. Similarly a potentially connective filament is discarded if it enters a new vortex 

from the side, rather than through one of the vortex endpoints. 

To determine whether a new-found region of finite cross section is a continuation of the 

original vortex or an entirely different vortex, we march the predictor-corrector scheme back- 

wards for the same number of steps taken since the previous region of nonzero cross section 

was exited. Some possible scenarios are illustrated in figs. 7-9. In fig. 7, the skeleton line 

leaves the first vortex tube at point pj and continues for n steps until it encounters the second 

vortex tube at point p2. The predictor-corrector scheme is then marched backwards n steps 

from p2 to p3. The distance between points p1 and p3 is small relative to the distance between 

P! and p2 (a 10-percent criterion is used); hence, the link between px and p2 is most probably 

a low-intensity vortex, and we retain the connective thread between these vortex tubes. 

12 



Figure 7. 
Forward integration from pi to p2 gives 
approximately the same path as reverse 
integration from p2 to p3. Points pi and 
p2 are therefore connected by a weak 
vortex. 

P4 
-S 

Figure 8. 
Forward integration from p4 to p5 differs 
markedly from reverse integration from p5 
to p6. The two vortex tubes are not 
connected; the core of the vortex on the left 
terminates at p4. 

Figure 9. 
Integration from p7 to p8 intersects side of 
vortex tube (wireframe). Reverse 
integration from p8 to p9 follows axis of the 
new vortex, away from original tube. The 
vortex tubes are not connected. 

However, in fig. 8 the vortex tube dissipates beyond point p4, and the continuation of its 

skeleton lacks clear direction and wanders through the flow field. The line intercepts another 

vortex tube at p5 after m steps. The predictor-corrector method is marched backwards m steps 

from p5 to pg. Initially, the reverse integration retraces the forward integration, but halfway 

between p5 and p6 the two lines diverge rapidly and become uncorrelated. The distance from 

p4 to p6 is a large fraction of the distance from p4 to p5, so the algorithm concludes that the 

vortex tube intersected at p5 is different from the vortex tube that ends at p4. The points on the 

vortex skeleton line that connect the two tubes are discarded, and the vortex skeleton is termi- 

nated. 

Finally, in fig. 9, the continuation of the skeleton line of the vortex tube that ends at point 

p7 intersects the side of another vortex tube (shown as a wireframe) and is immediately car- 

ried to the pressure minimum at pg. The reverse integration for this case follows along the axis 

13 



of the new vortex tube away from the original vortex. The point p9 is far from p7; hence, the 

two vortex tubes are distinct from each other and the line connecting them is discarded. 

3.5  Implementation Details 

Optimal performance of the predictor-corrector technique requires careful attention to imple- 

mentation details. This section addresses issues that are important to the successful use of the 

method. It is not exhaustive; additional details are provided by Singer and Banks [20]. 

Eliminating Redundant Seeds and Skeletons 

Recall that seed points are chosen based on pressure and vorticity-magnitude, allowing multiple seeds 

to generate a given vortex core. Sampling every grid point produces an overabundance of seed 

points and hence a multitude of nearly-coincident vortex skeletons (fig. 10). These skeletons 

each follow the same core, sampling it at different locations; yet one representative skeleton suf- 

fices. The redundancies are eliminated when points inside a tube are excluded from the pool 

of future seed points. We accomplish this by flagging any 3D grid cell in the computational 

domain that lies within a spherical volume of a skeleton point. The constant term of a Fourier 

representation of the cross-section's radius (see section 4.2) is taken to be the radius of the 

spherical volume. A future candidate seed is ignored if it lies in a flagged cell. 

Eliminating Spurious Feeders 

A seed near the surface of the vortex tube can produce a "feeder" vortex skeleton that spirals 

toward the vortex center. Intuitively, these seeds He within grid cells that should have been 

flagged but were missed because they lie slightly outside the spherical volumes of exclusion. 

Examples of these feeders are illustrated in fig. 11. We eliminate feeders by taking advantage 

of the fact that the predictor-corrector method is convergent to the vortex core. A feeder skel- 

eton, begun on the surface of the tube, grows toward the core; by contrast, a skeleton growing 

along the core does not exit through the surface of the tube. To validate a candidate seed p0, 

we integrate forward n steps to the point pn and then backward again by n steps. If we return 

pfl§ 

Figure 10. 
Multiple realizations of the same vortex 
tube from different seed points. Each seed 
point generates a slightly different skeleton 
line, although all the skeletons remain close 
to the vortex core. 
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Figure 11. 
J Feeders merge with a large-scale hairpin 

~J    ■.    -i*illl vortex. Three points that satisfy the 
j ^ • threshold criteria lie on the edge of the 

vortex tube. Their trajectories curve inward 
toward the core and then follow the main 

"~'*~' skeleton line. 

very close to p0 then the candidate was a "true" seed point. This is the same reverse-integra- 

tion strategy that is used for establishing that a filament actually connects two vortical regions. 

Numerical Considerations for Interpolation 

Neither the predictor nor the corrector step is likely to land precisely on a grid point; hence, 

we must interpolate the pressure and vorticity within the flow field. A linear approximation of 

the pressure gradient (the corrector step) will possess minima only at grid points. A three- 

point quadratic interpolation can produce minima within grid cells, but a three-point interpo- 

lation within a cell introduces bias toward one side or the other. To reduce any bias from the 

interpolation, we use a four-point Lagrange interpolation (found in textbooks on numerical 

computation) in each of the three coordinate directions. The high-order interpolation is justi- 

fied by the accuracy of the numerical simulation, which is spectral in the spanwise and wall- 

normal directions (Fourier and Chebysheff, respectively) and fourth-order in the streamwise 

direction. The interpolation scheme works quite well, although it is the most expensive step in 

our implementation. 

The interpolation scheme makes the predictor-corrector method at least first-order accu- 

rate: skeleton points are located to within the smallest grid dimension. This ensures that, on 

data sets with well-resolved vorticity and pressure, the method successfully locates vortex 

cores. 

Predictor Step 

The vorticity integration can be performed with a variety of methods. First, we used a fourth- 

order Runge-Kutta approach. This produced satisfactory results; however, step-size optimiza- 

tion was difficult to automate. Instead, we developed a technique whereby the point-to-point 

distance in the vorticity integration is always equal to the smallest dimension of the local grid 

cell. The new point location is found by advancing this distance in the direction of the local 
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vorticity vector. This procedure ensures that successive points will not be more than one grid 

cell apart, so that if the original calculation is well resolved, then the vorticity-line calculation 

will also be sufficiently resolved. The procedure also reduces the chance of wasting many cal- 

culations inside a single grid cell. 

Corrector Step 

Our implementation of the pressure-minimum correction scheme uses the method of steepest 

descent to find the local pressure minimum in the plane perpendicular to the vorticity vector. 

The smallest grid-cell dimension is used as a local length-scale to march along the gradient 

direction. 

The corrector phase can be iterated in order to converge to the skeleton, but such conver- 

gence is not guaranteed. We therefore limit the angle that the vorticity can change during a 

repeated iteration of the corrector phase, requiring that the cosine of the angle between the 

predicted and corrected vorticity be at least 0.9. In case it is not, we simply quit the corrector 

phase. We could choose a smaller step-size and re-try, but we have not found this to be neces- 

sary. 

4   Finding the Cross-section 

Having produced skeletons that follow vortex cores, we must next determine the shapes of the vortices 

through which they pass. A vortex generally assumes an elongated shape which is well-approximated 

locally by a cylinder. Our goal is to determine the cross-sections of the vortex tubes in planes perpen- 

dicular to the core. Since it is unclear how to precisely define which points lie in a vortex (see section 

2), it is also unclear how to determine the exact shape of a vortex tube's cross-section. Determining an 

appropriate measure of the vortex cross-section has been one of the more difficult practical aspects of 

this work. 

A point on the vortex skeleton serves as a convenient center for a polar coordinate system 

in the plane perpendicular to the skeleton line. We have chosen therefore to characterize the 

cross-section by a radius function. Note that this scheme correctly captures star-shaped cross- 

sections. Cross-sections with more elaborate shapes are truncated to star shapes, with discon- 

tinuities in the radius function (fig. 12). In practice this choice does not seem to be very 

restrictive, as section 4.2 indicates. 

In examining the cross-section plane there are two important questions to address. First, 

what determines whether a point in the plane belongs to the vortex tube? Second, how should 
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Figure 12. 
Representation of the cross-section in 
polar coordinates. The star-shaped 
interior (gray) of a non-convex curve 
(black) is represented by a radius 
function (bottom). In general, the vortex 
cross-sections have continuous, periodic 
cross-sections suitable for Fourier 
representation. 

the shape of the tube's cross-section be represented? This section summarizes the strategies 

that we found to be successful. 

4.1   Criteria for Determining Membership 

As the survey demonstrated, there are many heuristics for deciding whether a point is a member of a 

vortical structure. Most techniques appeal to some scalar quantity derived from flow quantities: a cer- 

tain threshold of that quantity determines membership in a vortex. Since the predictor-corrector 

method relies on pressure and vorticity, we wish to re-use these quantities for determining membership 

in a vortex. For massive datasets there is a significant penalty for storing or calculating additional sca- 

lar quantities. 

For isolated vortices, a threshold of pressure provides an effective criterion to determine 

whether a point belongs to a vortex. But when two or more vortices interact, their low-pres- 

sure regions merge and distort the radius estimate of any single vortex. This difficulty is 

resolved if the angle between the vorticity vector on the skeleton line and the vorticity vector 

at any radial position is restricted. Any angle greater than 90 degrees indicates that the fluid at 

the radial position is rotating in the direction opposite to that in the core. We have found that 

the 90-degree restriction works well in combination with a low-pressure criterion for the vor- 

tex edge. 

For the actual computation of the radial distance, the pressure and the vorticity are sam- 

pled along radial lines, emanating from the skeleton, lying in the perpendicular plane. We step 

along each radial line until a point is reached that violates the vorticity or the pressure-thresh- 

old criterion. 
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Figure 13. 
Comparison of different ways to 
represent the cross-section of a vortex 
tube. The shaded region is the finely- 
sampled radius function. The thin line 
is an approximating circle. The thick 
line is a 5-term Fourier 
representation. 

4.2  Representation of the Cross-section 

If the radius of the cross-section were sampled at 1-degree increments, then 360 radial dis- 

tances (and a reference vector to define the 0-degree direction) would be associated with each 

skeleton point. That is a great deal of data to save for each point of a time-varying set of vor- 

tex skeletons. We have found that an average radius is sufficient to describe the cross-section 

of an isolated vortex tube. 

When vortices begin to interact, the cross-section becomes non-circular and so the average 

radius does not provide a good description of its shape. A truncated Fourier representation of 

the radial distance provides a convenient compromise between the average radius and a full 

set of finely-sampled radial locations. The series is easy to compute, easy to interpret, and 

allows a large range of cross-sectional shapes. In our work, we keep the constant term, the first 

and second sine and cosine coefficients, the vorticity CO, and a unit reference vector x that defines 

the 0-degree direction in the cross-sectional plane. The cross-sectional radius is thus parametrized by 

r(t) = a0 + aj cos t + bx sin t + a2 cos It + b2 sin 2t 

where 0 < t < 2n. 

In general, the magnitudes of the last two coefficients (a2 and b2) are comparatively small, indicat- 

ing that the neglected terms are not significant. That observation also validates our assumption that the 

cross-section is well-represented by a continuous polar function. 

Fig. 13 illustrates a single cross section of a vortex extracted from direct numerical simu- 

lation data. The shaded region is the interior of the vortex tube, sampled at 1-degree intervals. 

The thin line is a circle, centered at the skeleton, showing the average radius of the vortex 



tube. The thick line is the truncated Fourier series representation of the vortex cross-section, 

providing a better approximation than the circle. 

In our time-varying data a single vortex develops into 44 vortices over the course of 231 time 

steps. In total there are 3,584 individual cores and 365,839 positive-area cross-sections. We calculated 

the relative energy represented by the last Fourier coefficients according to the fraction 

2   i. 2 

a,  + b~ 
f     =  t £  

rel 2 2,2 2,2 

In 87% of the cross-sections, the relative energy Erei due to the last two coefficients accounts for less 

than one-tenth of the total energy. 

5   Data Reduction and Reconstruction 
Time-varying volumetric datasets generally consume vast amounts of storage. This section is 

concerned with the problem of reducing the data size to permit an interactive examination of a 

time-varying flow. The typical non-interactive avenue for producing an animation of 3D volu- 

metric structures is to extract isosurfaces at each time step, generate an image frame, and 

record each frame to videotape or to disk. The individual datasets may take a long time to 

retrieve from remote mass-storage devices and the isosurfaces may take a long time to extract, 

but this pre-processing step is incurred only once to produce an animation. Replaying the ani- 

mation on a workstation presents other problems. A two-minute animation, at 30 frames per 

second, requires 3600 frames. A full color frame, at a resolution of only 640x480 pixels, 

requires about a megabyte. The total of 3.6 gigabytes of storage exceeds the range of current 

workstation memories. The animation can be compressed using MPEG, but decoding and dis- 

playing it at 30 frames per second is a challenge. Even if the animation could be replayed con- 

veniently, the general strategy of extracting isosurfaces from massive remotely-stored 

volumetric datasets does not promise interactive exploration of the time-varying flow in the 

foreseeable future. 

There are alternative techniques for compressing the volumetric data and even for render- 

ing images from the compressed format. Ning and Hesselink [21] report compression factors 

of about 5-fold by using vector quantization. The technique improves the performance of their 

volume renderer to about one minute per frame. Shen and Johnson [22] use frame-to-frame 

differencing, with a fixed viewpoint, to achieve compression factors up to about 700-fold at a 

rendering rate of better than one second per frame. We desire a scheme that offers both sub- 
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stantial data reduction to permit local storage and fast rendering to permit real-time interac- 

tion. 

There are techniques that reduce the number of polygons in a surface representation of a 

solid, as opposed to rendering it volumetrically. By visualizing only the polygonalized bound- 

aries of vortex tubes, one benefits from the fast rendering speed of the graphics hardware, as 

compared with a slower volume-rendering of the vortex interiors. Hoppe [23] reduced the 

polygon count of unstructured meshes by factors of 10 to 16. Turk [24] reduced the polygon 

count of unstructured meshes by factors of 10 to 18. Schroeder [25] used multiple passes to 

reduce the polygon count by factors of up to 10. These techniques are designed to apply to 

somewhat arbitrary surface shapes. In the case of vortex tubes we exploit their elongated 

cylindrical shape to achieve even more aggressive data-reduction using the Fourier series. In 

addition we are able to specify, at run-time, the polygonal resolution of the reconstructed vor- 

tex tubes. The details of reduction and reconstruction are described below. 

We performed a flow simulation using Cray computers over the course of two calendar 

years, using about 2000 Cray2 hours of processing time. The numerical grid grows with the 

size of the evolving flow structures from an initial grid size of 301x121x41 (in the stream- 

wise, wall-normal, and spanwise directions) to a final grid size of 461x161x275. Each grid 

point holds 1 data-word for pressure and 3 data-words for vorticity. A Cray word is actually 8 bytes, 

but 4 bytes per word would be adequate. The storage needs for each time step range from 24 mega- 

bytes to 326 megabytes, assuming a 4-byte word. The entire set of 3D grids requires at least 45 

gigabytes of storage. By using vortex skeletons with Fourier-series cross-sections we are able to 

reduce the data significantly and then reconstruct the vortex tubes locally on a workstation. 

5.1  Data Reduction 

In our DNS data, a typical vortex skeleton is a polyline composed of 30 to 200 samples. The 

time steps in the numerical simulation are non-uniform: the non-integer time increment is 

determined by bounding the amount of integration error it introduces. The vortex tubes pic- 

tured in fig. 7 are calculated at time step 152.8 and contain 1397 skeleton points. Each sample 

in a vortex skeleton requires 60 bytes of data to represent its position, tangent, reference vec- 

tor, cross-section coefficients, and velocity magnitude. Thus a reduction from 227 MB to 

84 KB is achieved at this particular time step, a 3000-fold improvement over the volumetric 

data size. 
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Figure 14. 
Reduction factors achieved using vortex 
skeletons. Horizontal axis indicates time 
step in the numerical simulation of an 
unsteady flow. Vertical axis indicates 
ratio of the size of original 3D grid to the 
size of the skeletal representation of 
vortices. 

Figure 15. 
A quadrilateral mesh connects 
consecutive cross-sections (each with 8 
samples) in a tube. On the left, 20° of 
twist between cross-sections causes the 
mesh to skew. On the right, the cross- 
section at the back has samples which 
are aligned with those at the front. 

Fig. 14 shows the reduction factors for the vortices over a range of time steps. At the end 

of the simulation the flow becomes fully turbulent and the 3D grid contains many interacting 

vortices over a large sub-volume of the computational domain. Even so, the technique contin- 

ues to reduce the dataset by factors of one to three thousand. The vortex data from the entire 

simulation can be reduced from the 45 GB volumetric grid to a 24 MB skeletal representation. 

This is an average reduction factor of about 1800. 

5.2  Faithful Reconstruction 

The significant data-reduction that vortex skeletons provide does not come without cost. 

There is still the matter of reconstructing polygonal tubes from the skeletons. If the tubes have 

circular cross-sections, they are generalized cylinders. Bloomenthal gives a clear exposition 

of how to reconstruct a generalized cylinder from a curve through its center [26]. The coordi- 

nate system of the cross-section usually twists from one skeleton point to the next. The key 

issue is how to keep the rate of rotation about the skeleton's tangent vector small. Excessive 

twist is visible in the polygons that comprise the tube: they become long and thin and their 

interiors approach the center of the tube (fig. 15). Our tubes are not cylinders: the additional terms 

in the Fourier series produce non-circular cross-sections. But a coordinate frame that twists along the 

skeleton will produce the same visible artifacts in a polygonal mesh. 
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Figure 16. 
Basis vector nt at a point p^ on a curve is 
projected onto the cross-section plane 
Lk+l to produce a new basis vector nk+1. 

In order to reduce twisting of the coordinates, we project the coordinate bases from one 

cross-section onto the next cross-section (fig. 16). Let pk be a point in the vortex skeleton with 

normal n^ and binormal b^. The tube's cross-section lies in the plane Lk defined by coordinate axes n^ 

and b^. The following point pk+l has cross-section plane Lk+l. We project n^ onto plane Lk+l to pro- 

duce a new normal vector nk+l. This produces a new coordinate system that has not twisted compared 

to its predecessor. The initial normal n0 and binormal b0 can be chosen in a variety of ways. We use 

(1, 1, 1) X (0 as an initial choice of the normal vector n0, where co is the vorticity and the coordinates 

tuple corresponds to the (stream, wall-normal, spanwise) directions. In the rare case that (1, 1, 1) and 

co are aligned, we use (1, 0, 0) as a second choice to produce the normal vector. The new normal vec- 

tor might be different from the reference vector (which indicates the 0-degree direction) for 

the Fourier representation of the cross-section. To reconstruct the cross-section, we phase- 

shift the angle in the Fourier series by the angular difference between the normal and the ref- 

erence vector. 

In general, 20 to 80 samples suffice to reconstruct a cross-section of acceptable image- 

quality. We keep the number of cross-sectional samples constant along a reconstructed vortex tube so 

that the tube can be represented as a quadrilateral mesh. Many graphics libraries have drawing routines 

that are optimized for quadrilateral meshes. 

Our original 3D grids, over 230 time steps, require at least 45 GB of storage. But in the recon- 

structed vortex tubes there are only 404,428 skeleton points. A point on the polygonal mesh requires 

27 bytes (for position, normal, and color). If each cross-section has 20 samples, the entire polygonal- 

ized, time-varying dataset requires about 220 MB of storage, which is easily within the reach of large- 

memory workstations. 
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Figure 17. 
Enhanced reconstruction of a 
hairpin vortex tube. The grooves 
follow integral curves of velocity, 
constrained to follow the surface of 
the tube. 

5.3  Enhanced Reconstruction 

Sometimes there is good reason for a "reconstruction" that is not faithful to the original shape 

of the vortex tube. The faithful reconstruction in fig. le does not convey the spiraling motion 

along the surface of the vortex tube. We experimented with different methods of visualizing 

the velocities on the tube itself. One helpful technique is to create a texture on the surface, 

drawing curves to indicate the helical flow. This visualization is enhanced dramatically when 

the curves are displaced inward to produce grooves. 

Fig. 17 demonstrates this technique on a single hairpin vortex. The grooves follow integral 

curves of the surface-constrained velocity vectors. That is, a curve is developed on the surface 

of the tube by projecting the velocity vectors onto the tube surface and integrating. The three 

curves in the figure begin from initial trajectories that are shifted in phase by increments of 

120 degrees. In an informal survey of a dozen colleagues, we found that none could estimate 

the amount of helical motion in a faithful reconstruction (as in fig. le) of a vortex tube; after 

all, there are no visual indications of the vortical motion. On the other hand, the same subjects 

instantly identified the direction and amount of rotation in the enhanced image of fig. 17. The 

model in the figure uses over 250,000 polygons to represent the vortex. This polygon count is 

prohibitively large for contemporary graphic systems to display in real time. For a static visu- 

alization, however, a large polygon count is reasonable in the trade-off between image quality 

and rendering speed. As graphics architectures begin to deliver 30 million polygons per sec- 

ond [27], we expect that such enhanced reconstructions of flow features will become more 

common. 

23 



Figure 18. 
S-shaped vortex head at time 184.6 
displayed in the Tracktur system. The 
white stripes on the flat plate mark units 
in the computational domain. 

5.4  Interactive Time-Varying Visualization 

The predictor-corrector scheme was developed in order to visualize vortical structures in a time-vary- 

ing turbulent flow. The scheme has the added benefit that it represents the vortex tubes very efficiently. 

We wish to visualize and explore the flow dynamically; to that end we have developed an interactive 

application called "Tracktur" [28] which allows investigation of the vortices as they evolve in a flow. 

There are other systems that have been developed for similar purposes [29] [30]. Tracktur differs from 

them by exploiting the data-reduction that the predictor-corrector scheme provides in order to display 

vortices in an unsteady flow. In addition, Tracktur provides 3D head-tracking, stereo display, and 3D 

hand-tracking to let a viewer navigate among the vortices and probe quantitative values within the 

flow. The system sustains about 15 updates per second on a full-screen display of about 8000 polygons 

using the Silicon Graphics Onyx with Reality Engine 2 graphics. 

Our ultimate goal is to better understand how a turbulent spot develops. Since this is a complex 

and dynamic process, we expected that a time-varying visualization tool like Tracktur would provide 

significant support. Other researchers report modest success in applying visualization systems to study 

scientific problems of interest to them [31] [32]. By using Tracktur we have discovered a backward- 

tilting S-shaped vortex head (fig. 18) that had been seen experimentally in a similar flow (fig. 19) [1], 

but had not been identified before in the flow data we were investigating. 

6   Future Work 

There are two important issues in data-reduction and reconstruction still to be addressed. First, 

we would like to minimize the number of samples along a vortex skeleton. Where the vortex 

skeleton has high curvature or where the cross-section changes shape quickly, many samples 

are required to produce an accurate reconstruction. But most vortex tubes have long, straight 

portions with nearly-circular cross-sections of nearly-constant radius. This characteristic 

should permit us to represent the vortex tube with fewer samples along its skeleton. 
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Figure 19. 
S-shaped vortex head in an 
experimental shear flow over a flat 
plate. Top: schematic diagram of the 
profile. From Acarlar and Smith, JFM 
v. 175, p. 71. © Cambridge University 
Press 1987. Reprinted with the 
permission of Cambridge University 
Press. Bottom left: dye injected into the 
flow develops into an upright head. 
Image courtesy of C. R. Smith. Bottom 
right: intensity gradients of the image at 
left produce a bas-relief image. 

The second issue concerns interpolation. In reviewing the development of a vortical flow, 

a scientist may be especially interested in narrowing the interval of animation to only a few of 

the original time steps. It would be helpful to generate in-between frames from the given data. 

One could interpolate the original 3D grids to extract interpolated vortex skeletons, but that 

would require a great deal of data communication and computation. Interpolating between the 

skeletal representations, on the other hand, could be done in memory. Unfortunately, it is diffi- 

cult to interpolate vortex tubes as they appear, branch, merge, and disappear over time. Other 

researchers have addressed the issue of matching corresponding isosurfaces in unsteady flows 

[33]. Matching and interpolating the skeletal representation remains as future work. Concern- 

ing the enhanced vortex reconstruction, it may be possible to animate the spiral grooves by 

advecting the displacement coordinates according to the flow velocities. Max, Crawfis, and 

Williams have used a similar technique to visualize wind velocities [34]. 

7   Conclusions 

The innovative use of a two-step predictor-corrector algorithm has been introduced to identify 

vortices in flow-field data. Unlike other approaches, our method is able to self-correct toward 

the vortex core even in a turbulent shear layer. The principle of using the vorticity vector field 

to predict the location of the next point and the gradient of the scalar pressure field to correct 

this position distinguishes this method from others. The theoretical justification for the tech- 

nique is that vortices are generally characterized by large magnitudes of vorticity and low 

pressures in their core. The presence of these two characteristics in a cross-section defines the 

shape of the vortex interior. 
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This paper discusses a number of novel approaches that we have developed to deal with 

matters such as eliminating redundant vortices, eliminating feeders, and representing the 

cross-section of a vortex tube. Sample extractions of vortices from various flow fields illus- 

trate the different aspects of the technique. 

The vortex skeletons are an economical way to represent vortical structures within a flow, 

offering data-reduction on the order of more than a thousand-fold even in a complex flow. 

This presents an opportunity to store hundreds of frames of vortex geometry in workstation 

memory. As a proof of concept, we implemented a system that lets a user interactively explore 

an evolving turbulent spot. Where interactivity is not important, a vortex tube can be 

enhanced during reconstruction by modelling grooves in the surface in order to help display 

the dynamics of vortical flow in a static image. 
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